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A new and remarkably facile sp3-C–O bond forming reaction

of b-hydroxyalkyl Rh porphyrins to form epoxides has been

discovered and its mechanism investigated.

Carbon–oxygen bond formation at transition metal centers is a

fundamental organometallic transformation that serves as the

functionalization step in many important catalytic processes. For

example, Pd-catalysed aryl etherification1 and alkene alkoxycar-

bonylation,2 Pt-3 and Pd-catalysed4 alkane oxidation, and Rh-

mediated olefin hydrofunctionalization5 all involve the formation

of carbon–oxygen bonds as a key step in the catalytic cycle.

However, despite the significance of this transformation, relatively

few C–O coupling reactions at transition metal centers have been

directly observed and studied, and most still require elevated

temperatures, extended reaction times, and/or electronically/

sterically constrained substrates.4a,6–10 Such limitations hinder the

development and scope of processes in which C–O bond formation

is critical to product release and catalyst turnover. Furthermore, a

significant and potentially important class of C–O coupling

reactions—those involving the formation of sp3-carbon–oxygen

bonds—remain exceedingly rare.8–10

We report herein our preliminary investigations of a series of

porphyrin RhIII b-hydroxyalkyl complexes, which undergo clean

and remarkably facile sp3-C–O bond forming reactions upon the

addition of base. Furthermore, we describe mechanistic investiga-

tions that implicate anSN2 pathway for this unusual transformation.

The nucleophilicity of square planar RhI porphyrins is well-

documented, and these complexes react cleanly with many

sterically unencumbered electrophiles via an SN2 mechanism.11

As such, a series of (TPP)RhIII [TPP = tetraphenylporphyrin]

b-hydroxyalkyl adducts was readily prepared by reaction of

Na[(TPP)RhI] with unsubstituted or mono-substituted epoxide

derivatives (Scheme 1).11a,b These reactions were complete within

30 min at 25 uC, and afforded complexes 1a–c in 50–60% isolated

yield.{ The products were characterised by 1H NMR spectroscopy

based on the dramatic upfield shifts of the alkyl proton and OH

resonances (resulting from the diamagnetic anisotropy associated

with the porphyrin ligand). For example, the a-protons of complex

1b appear at d 24.57, while the hydroxyl proton resonates at

d 23.80 in C6D6.
12

Complexes 1a–c showed no propensity toward inter- or

intramolecular C–O bond formation under neutral conditions.

However, the addition of several equivalents of base resulted in

rapid intramolecular sp3-C–O coupling to yield epoxides

(Scheme 2). Under optimized reaction conditions (in C6D6 with

3 equiv. 18-Crown-6), complex 1b reacted with KOtBu to produce

1,2-epoxyhexane and K[(TPP)RhI] in quantitative yield, as

measured by 1H NMR spectroscopy.13 This reaction proceeded

under unprecedentedly mild conditions,4a,6–10 and was complete

within 5 min at room temperature.

To determine the mechanism of this transformation, the

stereospecifically deuterated substrate 1b–d was synthesized via

reaction of Na[(TPP)RhI] with trans-1,2-oxido[1-D]hexane. The
1H NMR spectra of 1b–d and 1b are compared in Fig. 1. Trace (A)

is the spectrum of complex 1b and trace (B) is the decoupled

spectrum of complex 1b obtained upon irradiation of Hc at

d 22.43. The very high-field positions of Hc and the –OH proton

(d 23.8) with respect to the highest field CH2 protons (d 21.4 and

20.9) and the gradually descending shifts of the other alkyl

resonances indicate that the conformation of 1b is as shown, with

the larger n-butyl group anti to the rhodium, similar to 1a.12 Very

similar chemical shifts have been reported for analogous gauche

b-hydroxy-N-alkyl porphyrins.11e Accordingly, the following

coupling constants in 1b can be obtained from spectra (A) and

(B): 2Jab = 9.34 Hz, 3Jac = 8.45 Hz, 3Jbc = 1.47 Hz, 2JRh–H =

2.93 Hz. The 1H NMR spectrum of compound 1b–d is shown in

spectrum (C), indicating that Ha is the deuterated position in 1b–d.

This identification confirms that the formation of

b-hydroxyalkylrhodium(III) porphyrin complex 1b occurred with

inversion of stereochemistry at Ca,
11 presumably via SN2 attack of

Na[(TPP)RhI] on the epoxide.
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Scheme 1 Synthesis of (TPP)RhIII b-hydroxyalkyl complexes.

Scheme 2 C–O bond forming reactions of complexes 1a–c.
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The subsequent addition of KOtBu/18-crown-6 to complex 1b

led to rapid C–O bond formation to produce the corresponding

epoxide. The cyclized product was analysed via 1H NMR

spectroscopy (Fig. 2, Spectra A, B, and C). Spectrum A shows

the spectrum of an authentic sample of 1-hexene oxide, while

spectrum B shows that of trans-1,2-oxido[1-D]hexane (containing

24% unlabelled 1-hexene oxide). Finally, spectrum C shows the

spectrum of the volatile components of the reaction mixture from

1b–d following trap-to-trap distillation.

The 1H NMR spectra of the epoxide product (C) and of trans-

1,2-oxido[1-D]hexane (B) are clearly identical, indicating that the

epoxide ring opening/ring closing sequence led to overall retention

of stereochemistry. Based on this data, it is clear that C–O

coupling proceeded with inversion of configuration at Ca,

implicating an SN2 mechanism (Scheme 3). Alternate mechanisms,

including pre-coordination of the alkoxide6,7 or radical chain

pathways11d can be ruled out, as they would involve retention or

scrambling of stereochemistry, respectively. Notably, the proposed

mechanism is consistent with conclusions of Collman et al. that a

closely related RhI/RhIII alkyl exchange reaction proceeds by an

SN2 pathway.14,15 Similar mechanisms have also been observed in

C–O bond forming reductive elimination from PtIV centers, which

serve as the product forming step in the Shilov reaction.3c By

extension, it can be inferred that the anti-Markovnikov hydro-

functionalization of olefins we have recently described for oxygen,

nitrogen, and carbon nucleophiles5 all proceed via such an SN2

displacement of a rhodium(I) porphyrin leaving group.

Accordingly, efforts to make this transformation truly catalytic

will need to address (i) the factors that affect the leaving group

ability of the RhI as well as (ii) the compatability of other

elementary steps of the catalytic cycle with the basic reaction

medium required for the C–O coupling process.

The carbon–oxygen bond-forming reaction described herein is

particularly notable in light of the diverse and unique reactivity of

Rh porphyrins. For example, [Por]Rh complexes are well-known

to promote the C–H activation of methane and toluene16a as well

as to mediate highly regioselective alkene/CO insertion reactions16b

under extremely mild conditions. Developing methods to couple

such transformations (which produce [Por]Rh s-alkyl and

s-formyl products) with subsequent functionalization steps could

provide novel insights and solutions to many challenges in

catalysis, including alkane oxidation, regioselective olefin hydro-

functionalization, and the Fisher–Tropsch synthesis of hydro-

carbons. Efforts towards these applications are currently underway

in our laboratories.5

In conclusion, this report describes a new, base-promoted sp3-

C–O coupling reaction of b-hydroxyalkyl RhIII porphyrins.

Mechanistic investigations reveal that this transformation proceeds

via deprotonation of the b-hydroxyalkyl ligand followed by

nucleophilic displacement of K[(TPP)RhI] by an SN2 pathway.

Fig. 1 1H NMR spectra of alkyl-rhodium(III) complex 1b. Integration of

trace C indicates ca. 60% deuteration.

Fig. 2 1H NMR (300 MHz) spectrum (C6D6) of (A) authentic 1-hexene

oxide, (B) authentic trans-1,2-oxido[1-D]hexane (containing 24% unla-

belled 1-hexene oxide), and (C) product obtained from treatment of

complex 1b–d with 3 equiv. KOtBu/ 3 equiv. 18-crown-6. Scheme 3 Mechanism of reductive C–O bond formation for 1b–d.
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